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A class of functions was introduced by P. E. Koch (Research Report No. 72,
Institute of Informatics, University of Oslo, 1982) that includes the algebraic,
trigonometric, and hyperbolic polynomials, but retains sufficient similarities to the
algebraic polynomials so that it was possible to generalize the Jackson theorems.
This class need not satisfy the Haar condition. Some of the properties of orthogonal
polynomials are extended here to this class. In particular, the recurrence relation,
the Erdos-Turan theorem, the Dini condition for pointwise convergence of
orthogonal expansions, and some of the basic properties of Gaussian quadrature
are generalized. © 1985 Academic Press. Inc,

1. INTRODUCTION

In [5] the author introduced a class of functions that includes the
algebraic, trigonometric, and hyperbolic polynomials, but retains sufficient
similarities to the algebraic polynomials so that it was possible to
generalize the Jackson theorems. In this paper we extend some of the
properties of orthogonal polynomials to this class. In particular, we
generalize the recurrence relation (Section 2), the Erd6s-Turan theorem
(Section 3), the Dini condition for pointwise convergence of orthogonal
expansions (Section 4), and some of the basic properties of Gaussian
quadrature (Section 5).

Before we go any further, let us identify this class.

DEFINITION 1.1. Let 1= [a, b] and p. = (a + b )/2. For functions f: 1-+ IR
define J: I-+IR by J(x) = /(2p. - x), XE I. Call f even if J = f, odd if J = -f
Let s, Cl> C2 be continuous functions that are different from zero almost
everywhere, where s is odd and Cl> C2 are even. Put

(1.1 )
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where the kth basis function is

kodd,

keven,
k= 1, 2,.... (1.2)

We notice the following connection between Vn and the polynomials
P n = span{1, X, ... , xn

- 1}: every t/J E Vn may be written in the form

(1.3)

where pEPn is even, q E Pn is odd, and 0 denotes the composite function
operator. Especially, if t/J E Vn is even, then

and if t/J E Vn is odd, then

t/J=cz(qos),

Also

pEPn' P even, (1.4 )

(1.5)

n ~ 1. (1.6 )

In fact, we get V n = P n in the case s(x) = X -11, c1(x) = cz(x) = 1, x E I.
VZm + 1 becomes the trigonometric polynomials of degree ~m if we use

s(x)=sin«x-I1)/2), c 1(x)= 1, and cz(x)=cos«x-I1)/2), XEI. In this
case (1.1) will also define even dimensional trigonometric spaces lying
between these odd dimensional ones. The interval I may be any closed one
with length ~ 2n.

By choosing s(x) = sinh«x -11)/2), c 1(x) = 1, cz(x) = cosh«x -11)/2) we
obtain hyperbolic polynomials (see Section 3 for definitions).

In general, Vn need not satisfy the Haar condition on I. But if the inter
polation points lie symmetrically around the midpoint 11 the interpolation
problem will have a unique solution (see Section 3). Also Gauss quadrature
rules exist when the weight function is even (Section 5).

2. A RECURRENCE RELATION

Let us first give some notation. Define the inner product ( , ) by

(f, g) =rf(x) g(x) w(x) dx
a

(2.1 )

where w is Riemann integrable and positive. Let L~(I) be the underlying
Hilbert space and II II the induced norm.
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We will use the Gram-Schmidt process to orthogonalize the sequence
11'/2'/3"" given by (1.2). First we must show that II> ...,/n a~e linearly
independent for each n. Suppose not. Then by (1.1) and (1.3) there are 
polynomials p, q E Pn , not both of them identically zero, such that
CI(P 0 s) + c2(q 0 s) =0, where P is even and q is odd. Set rP =CI(P 0 s) +
cz(q 0 s). Then cI(p 0 s) = !(rP +~) = 0. The polynomial P must vanish on a
set of positive measure. Hence P = 0. Similarly q = 0. This contradiction
implies the linear independence. Now we may use the Gram-Schmidt
process. Put

n= 1, 2, .... (2.2)

{rPl>"" rPn} is then an orthogonal basis for Vn- {r.bt,..., r.bn} is an orthonor
mal basis for Vn, where r.bk = rPklllrPkll·

Notice that 11>/3'/5'''' are even and that IZ'/4'/6"" are odd. If the
weight function w is even then by (2.2), rPl =II is even, rPz =f2 is odd, rP3 =
13 - ((/3' rPd/(rPl> rPd) rPl is even, and so on. Using induction on n we obtain
by (2.2)

n= 1, 2,.... (2.3)

These orthogonal functions possess a five term recurrence relation. This
result generalizes that of [11].

THEOREM 2.1. Let fl'/2'/3,'" be as in Definition 1.1. The orthogonalized
sequence given by (2.2) possesses the lollowing recurrence relation:

j = n - 3,..., n, n ~ 4.

If w is even then an,n = an,n _ 2 = 0.

Proof By (1.6), S2rPkE Vk+2, By (2.2) there are an.}E~ such that

n

rPn+l- s2rPn_l= - L an,jrPj'
}~l

Now proceed as in the proof of the recurrence relation for orthogonal
polynomials, Taking inner products with rP} yields an,} = an.}, j = n - 3,..., n,
and an,} = 0, j < n - 3. If w is even then by (2.3) S2rPn _ 1 rPn wand
s2rPn_IrPn_ZW are odd. So an,n=an,n-z=O. I

If we set rPo = rP _ I = 0, then (2.4) is valid for n ~ 2.
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Since SZcPn_3 may be written in the form cPn-1 + I:7 Y;cP; we find that also
ct n•n - 3 = IlcPn_,ll z/llcPn_ 311 z. . .

If CI = Cz then (2.4) may be replaced by a three term recurrence relation
(since rP E Vk => scP E Vk + " k :;:; I ).

In particular, the recurrence relation for orthogonal polynomials IS

obtained in the case Cl = Cz = 1, s(x) = x ~.u.

For the orthonormal sequence we have'

j = n - 3'00" n + 1, n :;:; 4. (2.5)

3. INTERPOLATION

We will first show that under certain mild conditions on C I , Cz, s, inter
polation from Vn is possible when the interpolation points lie symmetrically
around the midpoint of the interval.

LEMMA 3.1. Assume that s is strictly monotone on 1. Let n EN and let
~ I , ... , ~n be n distinct points in I, located symmetrically around ,11 = (a + b )/2,

j= 1'00" n. (3.1 )

Suppose that CI(~J # 0, cz(~;) '* 0, j = 1'00" n. Then for any f E C(l) there is a
unique function cP in Vn that solves the interpolation problem

j= 1'00" n. (3.2)

(3.3 )j= 1,..., n.

Proof Any cP E Vnmay be written in the form (1.3). Since CI, Cz, pare
even and sand q are odd and (3.1) holds, (3.2) is equivalent to

Cl(~J p(s(~;))= !(f(~j) +!(~J),

cZ(~j) q(s(~j)) = !(f(~j) - !(~j))'

This uniquely determines p and q. Since !(f+!Vc1 (!(f - !Vcz) is even
(odd), p is even and q is odd. I

The following conditions on CI, Cz, s will often be sufficient for our pur
poses:

ASSUMPTION 3.2. Let I = [a, b]. Suppose that C 1 , Cz E C(I) are even and
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that cl(x»O, c2(x»0, a<x<b. Suppose also that SECI(I) is odd,
s'(x) > 0, a < x < b, and that (w 0 s ~ I) . (s ~ I)' is Riemann integrable, where
w is the weight function.

From the classical Erdos-Turan theorem we know that it is advan
tageous to use the zeroes of orthogonal polynomials as interpolation
points. To extend this theorem we must first verify that iflk + I has k zeroes
in I. The following proposition generalizes a result in [12, p.245].

PROPOSITION 3.3. Assume that c l , c2 , s satisfy Assumption 3.2 and that
clx),fO, x=a, b, i= 1, 2. Suppose further that the weightfunction w is even.
Then for each kEN, iflk has exactly k - 1 zeroes on I. They are all simple,
contained in (a, b), and they are located symmetrically around )1.

Proof Equations (2.3), (1.4), and (1.5) imply

iflk = cdPk 0 s),

=C2(Qk 0 s),

kodd

keven

where Pk is even and qk is odd. First let k be odd. A simple change of
variable shows that Pi> P3' Ps,'" are orthogonal with respect to the weight
function VI = (c i 0 S -I f(w 0 S -I )(s -I y. PI' P3' Ps,... are all even. Since VI

is even, PI' P3, Ps,· .. may be extended to a full sequence of polynomials,
PI' P2, P3,"" orthogonal with respect to VI' This is because P2, P4' P6""
would be all odd anyway and independent of PI' P3, Ps,.... From the
classical theory we know that Pk has exactly k - 1 zeroes and that these are
all simple and lying in (s(a), s(b)). Since V I is even, they also lie sym
metrically around O. Since iflk = cI(Pk 0 s), this holds for iflk too. The case of
k even is proved in exactly the same way. I

We apply Proposition 3.3 in the special case that CI = C2 = 1. Let us use
the notation

Un =span {1, s, ..., sn-I},

We now come to the extended Erdos-Turan theorem.

(3.4)

THEOREM 3.4. Suppose that c l , C2' s satisfy Assumption 3.2. Let w be an
even weight function. Let II II be the norm induced by w. Let ljJ I, ljJ 2, ljJ3"" be
orthogonal with respect to w, where ljJk E Uk\ {O}, k ~ 1. Let gj}j= I be the
zeroes of ljJn + I' n ~ 1. Let f E C(I). Ifj E {I, 2} and () E {a, b} is any zero of
Cj we will assume that the one-sided limit limx->o(f(x) + (-1 )j-I !(x))/cix)
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exists and is finite. For each nE N, let XnE Vn interpolate to f at gJ}j~I'

Then

lim Ilf-Xnll =0. (3.5 )

Proof By Proposition 3.3 there are exactly n zeroes of t/J n + I' Since they
are contained in (a, b) and are situated symmetrically around j..l, Xn exists
by Lemma 3.1, n ~ 1. By (1.3) we may write Xn in the form Xn = cI(Pn 0 s) +
c2(qn 0 s), Pn' qn E Pn, Pn even, qn odd. It is sufficient to show that cI(Pn a s)
converges to the even part off, fl =!(f+J), and that C2(qn 0 s) converges
to the odd part, f2 = !(f- J). By symmetry it is sufficient to show the first.
By the hypotheses we may defineflic i as an element of C(I). Put v(y)=
w(s - l(y))(S - I )'(y). We notice that

By (3.3), Pn interpolates to II 0 S -llc 1 0 S - 1 on {s(~.7) }j~ I' The change of
variable x = s - l(y) shows that t/J n + lOS - 1 is the (n + 1)th orthogonal
polynomial with respect to v. Hence the classical Erdos-Turan theorem
shows that the right side of (3.6) tends to zero as n-HXJ. I

If e;(x) > 0, X E I, i = 1, 2, then by the Banach-Steinhaus theorem

(3.7)

where C is a constant. The Jackson-type theorems in [5] now yield the
following corollary.

COROLLARY 3.5. Assume S,CI,czEcoo(I) and that s',c1,czare positive
everywhere on I. Let w be an even weight function. Let f E Ck(I), where kEN.
Let Xn be as in Theorem 3.4. Then

as n-HXJ. (3.8)

Let us now look at spaces of trigonometric and hyperbolic functions.

DEFINITION 3.6. Let j..l be the midpoint of I. First let 0 < rJ. ~ nl(b - a).
Set S~= {O} and for n~ 1, xEI
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s~ = tt (aj cos(2ja(x-ji» + bj sin(2ja(x-ji»): aj , bjE IR}, n = 2m + 1

= t~, (ajcos((2j-1) a(x-ji» +bj sin((2j-1) rx(X-ji»): aj , bjE IR},

n = 2m (3.9)

and

8~ = span(S~_, u {{T~}), (T~(X) = cos(nrx(x-ji»,

=sin(nrx(x -ji»,

nodd

n even
(3.10)

S~.v = S~,

=811.n'

n - v even,
v= 1, 2.

n- v odd,
(3.11 )

Now let rx be any positive real number. Define H~, fI~, H~.v as in (3.9),
(3.10), (3.11) respectively, by just changing sin into sinh and cos into cosh.

Let us now verify that these spaces are special cases of (1.1). Consider
S~". Put s(x) =sin( rx(x -ji», c, (x) = 1, C2(X) = cos(rx(x -ji». By elemen
tary trigonometric formulas it follows that S~" is in the form (1.1).
Similarly S~,2= Vnfor s(x)=sin(rx(x-ji», c,(x)=cos(a(x-ji», c2(X) = 1.
The hyperbolic cases follow analogously, H~,v = Vn when s(x) =
sinh( rx(x - ji»,

c,(x)=1, v=l

=cosh(rx(x-ji», v=2,

c2(x)=cosh(rx(x-ji», v= 1

= 1, v =2.

Notice that S~ is invariant under translation but that 8~ is not, and
similarly for H~ and fI~. If 0 < a < n/(b - a) then S~ is an extended
Tchebycheff space, but S~ need not be one. In [7] a Newton form for Her
mite interpolation by S1~2+ , and by 81~2 was given, in the last case assuming
the average of the interpolation points to be ji. Error formulas based on
trigonometric divided differences are given in [6]. By [13, Theorem 3.1],
H~ and hence H~ is an extended complete Tchebycheff space when a> O.

Let us now apply our previous results to these functions.

THEOREM 3.7. Let 1= [a, b], ji = !(a + b), and 0 < rx < n/(b - a). Then in
both cases, S~." n= 1, 2, 3,..., and S~.2' n= 1, 2, , (2.4) is valid, with s(x)=
sin(a(x -ji». For any n E N and any points ~" , ~n symmetrically located
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around J1., there is a unique ~ E S~,v that solves (3.2). Let w be an even weight
function. Let '" I' '" 2' '" 3 "" be the orthogonal sequence equivalent to 1,
sin( IX(x - J1.)), sin2( IX(x - J1.)), sin 3( IX(x - J1.) ),.". Then '"n+ I possesses exactly
n zeroes on I, {~j} 'J ~ I' and they are located symmetrically around J1., n ~ 1.
Given anyfEC(I),for each nEN, let XnES~,v interpolate tofat gj}'J~I'

Then (3.5) holds. IffECk(I) then (3.8) holds, The same results holdfor the
hyperbolic case. Here IX may be any positive number and "'I> "'2' "'3'00' the
orthogonal sequence equivalent to 1, sinh( IX(X - J1.)), sinh2(IX(X - J1. )),." ,

Let us look at the special case S~I' n=I,2,3,00., when lX=n/(b-IX).
Equation (2.4) is still valid. If the ~ynimetrically located interpolation
points are lying inside (a, b), then by Lemma 3.1 the interpolation
problem (3.2) will always have a unique solution. Suppose that
y--+w(J1.+IX- l arcsinY)IX- I (1- y 2)-1/2is Riemann-integrable on [-1,1],
where w is even. Then by Proposition 3.3 the n simple zeroes of '" n + I are
lying symmetrically around J1. and are contained in (a, b). To obtain the
conclusion (3.5) we must suppose that lim x _ a + (f(x) - f(2J1. - x))/
cos( IX(X - J1.)) and lim x _ b _ (f(x) - f(2J1. - x) )/cos( IX(X - J1.)) are finite. This
will be the case if f( a) = f( b) and f is differentiable at a and b.

The case S~,2' n = 1, 2,,,., IX = n/(b - a), has nearly all the properties of the
previous case. The only difference is that instead off(a)=f(b) we suppose
thatf(a) = -f(b) to obtain (3,5).

In the polynomial case we know that the zeroes of the Tchebycheff
polynomials are especially well suited as interpolation points. Consider the
proof of Theorem 3.4. If we let v be the Tchebycheff weight function then Pn
will normally be a good approximation to fl 0 S - 1/ClOS - 1 in sup-norm
and similarly for qn- Hence Xn = c1(Pn 0 s) +C2(qn 0 s) may approximate f
well. If s is normalized so that s(I) = [ -1, 1], then the interpolation points
will be

( (
2j - 1 ))~j=S-l cos ~n ,

Particularly, for the trigonometric case,

j= 1,..., n. (3.12)

~j = IX - I arcsin ( sin ( IX;) cos CJ2~ 1 n) ) + J1., J=1,,,.,n (3.13)

where h = b - a, As h-+O or IX-+O these tend to the Tchebycheff points in I.
When IXh = n they are equidistributed.
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We now investigate conditions for the convergence of the Fourier series

00

L (f,rPdrPk(X)
k=1

(4.1 )

to f(x), where rPI' rPz, rP3"" are the orthonormal functions from VI' Vz,
V3 ,···, respectively, and the inner product is given by (2.1). We will show
that the kernel

n

Kn(x, y) = I rPk(X) rPk(Y),
k~1

n~l (4.2)

has a Christoffel-Darboux type representation. This leads to Dini-like con
ditions for the pointwise convergence of (4.1) to f

Let ifJJ be the nth partial sum of (4.1),

n

ifJJ= L (f,rPk)rPb
k=1

ifJn is the orthogonal projection onto Vn- Also

(ifJJ)(X) = (Kn(x, '),f),

n ~ 1.

n~ 1.

(4.3 )

(4.4 )

The expansion for Kn(x, y) may be simplified.

PROPOSITION 4.1. Let Kn be as in (4.2). Set

K;,iX, y) = rPix ) rP;(y) - rP;(x) (fiiy),

if SZ(x) # SZ(y) then for n ~ 1

x, yEI, i, j~ 1. (4.5)

K ( ) = (f3n+ I,n+ ZKn,n+ 2 + f3n+ I,n+ 1 Kn,n+ 1+ f3n,n+ 1 Kn-I.n+ 1 )(X, y)
n X, Y z 2S(X)-S(y)

(4.6)

Proof The proof is quite similar to that of the ordinary Christof
fel-Darboux identity; e.g., [1, pp.118-119]. Let n = k + 1 in (2.5). We
evaluate it at x, multiply the equation by rPk(y), switch x and y, and sub
tract. Then we sum up to n. Because f3 ;,j = f3j + I,; _ I' nearly all members
cancel, and we end up with (4.6). I

We now come to the Dini-Iike conditions for the pointwise convergence
to f This extends the classical case (e.g., [9, pp. 69, 70]).
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THEOREM 4.2. Suppose that s, c I' C 2 E C2(I) satisfy s/(x), c I (x),
C2(X) >0, XEI. Let w be a weight function. Given any fEL~,(l) and
xEI\{fl}, set

F( )==f(y)-f(x)
x y s(y)-s(x)' YEI. (4.7)

If FX' F2/l- x E L~(I) and {l,b"k(X)} k= I is a bounded sequence, then (4.1) con
verges to f(x) at the point x. The same conclusion is obtained if FX' F2/l- x E

L~v(I) and {lll,b"kll oo} k= I is bounded.
Suppose now that f E C(I). The Fourier series (4.1) converges to f

uniformly on a compact set E if E lies symmetrically around fl, fl ¢ E,
{SUPXE E l,pk(x)1 }k= I is bounded, and for each e > 0 there is a (j > 0 such that

rin(h,X+bl F;(y) w(y) dy < e,
max(a,x - b)

xEE. (4.8)

Proof Let fE L~,(I). We will instead use

f(2J1- x) - f(x)
g(y)==f(y)+ 2S(X)C2(X) ¢J2(y), yEI.

g satisfies g(2J1- x) =: g(x). Since ¢J2 E Vn, n ~ 2, limn_ oo (cPnf)(x) = f(x) ~
limn_oo(cPng)(x) ==g(x). Let inE Vn be the best approximation to the
function 1 in sup-norm. Since cPnin== in, we may split the problem in three
parts:

g(x) - (cPng)(x) == g(x)(l- in(x)) + g(x)(cPnUn -1))(x)

+ (cPn(g(x) - g))(x). (4.9)

Suppose now that FX'F2/l-xEL~(I) and that {,pk(X)}k=1 is bounded.
We will show that each of the three addends on the right side of (4.9) tends
to zero as n-+CIJ.

Since the function 1 is in e2
, then by the Jackson estimate (4.17) in [5],

II in - 11100 :::; Mn - 2, n > 2, where M is a constant. So the first addend on the
right side of (4.9) is O(n- 2

) and hence tends to 0 as n-+oo.
Consider l(cPnUn-1))(x)l. By (4.2), (4.4), and the above estimate for

Ilin - 11100, this is <L~ = I l,pk(x)1 J~ Il,b"k(y)1 w(y) dy' Mn - 2. By the Cauchy
Schwartz inequality each of these integrals is :::;(J~ w(y) dy)1/2. Since
{i,pk(x)l}k=1 is bounded, 1(¢JnUn-1))(x)1 =O(n-').

Now consider the third term on the right side of (4.9). We may now
proceed as in [9, pp. 68, 69]. The third term is

Pn + I,n + 2(/(n,n + 2(X, .), Gx) +Pn + I,n +.1 (/(n,n + ,(x, '), GJ
+ Pn,n + ,(Kn_ l,n +, (x, .), GJ (4.10)
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where GAy) = (g(X) - g(y))/(S2(X) - S2(y)). By g(x) = g(2j1- x),
s(2j1- x) = -s(x) and some calculation, we find

1
GAy) = 2s(x) (FAy) - F21'~AY))

+ f(2j1- x) - f(x) (<P2(X) - <P2(Y)
4s2(x) c2(x) s(x)-s(y)

(4.11 )

<p2(2j1- x) - <P2(Y)).
s(2fl-X)-S(Y)

The second addend on the right side of (4.11) is bounded. The first addend
is in L~(I). Hence GxEL~(I). Therefore limk_H<J (ifk , Gx)=O. From (2.5) it
follows that IPi) ~ Iisil ~. The form of Ki,j and the boundedness of
{Iifk(x) I}k~ 1 imply that the three inner products in (4.1 0) tend to zero as
n-HfJ. Hence the series (4.1) converges tof(x).

Suppose instead that Fn F21' ---x EL~(/) and that {llifkll en} k= 1 is bounded.
By [9, proof of Theorem 3, pp. 69,70], (Fn ifd, (F21'-x, ifd--..O as k--..oo.
And that suffices.

Suppose now that fE C(I), j1 i E, E compact and symmetric,
{SUPXE E lifk(X)l}k~ 1 bounded, and that the uniform Dini-condition (4.8)
holds. To show uniform convergence it is enough to look at the third term
on the right side of (4.9), i.e., (4.10). By the boundedness of IPi,jllifk(X)I,
xEE, i,j,k~l, it suffices to show that limk~oo(ifbGx)=Ouniformly for
x EE. The second addend on the right side of (4.11) is continuous and
hence satisfies (4.8). We may therefore concentrate on Fx, F21'-x' We need
only have limn~en(tPn, Fx) = 0 uniformly on E. Since the limit holds
pointwise it is sufficient to show that {FxLEE is a compact subset of L~(I).
Take an arbitrary sequence {F~n}:= l' Proceeding to a subsequence if
necessary, we may suppose limn~oo X n = x' EE. By (4.8) there is an open
neighborhood B of x' such that IlFx' - Fx.ll L;(B) < e, n ~ no. On
l\B IFx' - F~nl is uniformly bounded for n sufficiently high and IFx' - Fx.!
converges pointwise to O. By Lebesgue's theorem, Fxn --..Fx' in L~(l\B).

Therefore Fxn converges to Fx' in L~(I). So {F~} XE E is compact and the
theorem is proved. I

Consider the hypo~heses of the last theorem. When is F x , F 21'_ x EL~(I)?

Certainly if f is Lipschitz-continuous. If w is bounded, then F x ,

F21'_xEL~(I) whenfELipex and !<ex~ 1. When is {tPk(X)}k=1 bounded?
We will only consider the case w = 1. Proceeding similarly to [4,
pp. 27, 28] we find that if s --- 1, Ch C2 are analytic, and S(I) = [ -1, 1], then
lifn(x)1 ~ C( 1 - S2(X)) - 1/2, a < x < b, n ~ 1, where C is a constant. Hence in
the case w = 1 the Fourier series converges to f(x) at the point x if
fELipex, !<ex~l, and a<x<b, X¥j1.

Note that the conditions on s, C I , C2 in Theorem 4.2 certainly are fulfilled

640/43/2-5
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in the trigonometric case (when O<O«n/(b-a)) and in the hyperbolic
case (0( > 0). We also have that s - 1, C1, C2 are analytic.

Consider the proof of Theorem 4.2. Suppose that c1 = 1. Then of course
in = 1. So (4.9) consists of only its third term. We may then weaken the
conditions on s, Cl, c2. Instead of s'(y), c2(y»0 "lyE! we may suppose
that Assumption 3.2 is fulfilled and that a < x < b, x#- p. For the uniform
convergence part we need to assume that E c (a, b), p ¢ E. Notice that this
covers the case Vn=S~l' n=I,2,3, ..., O(=n/(b-a). From the classical
theory of Fourier series 'we know that F, E L~(l) is sufficient to get con
vergence towards f(x) at x. Here we had to assume F21'_ x E L~(l) and
x ¢ {a, p, b} too, to get the same result. But then the series would also con
verge at 2p - x.

5. EXTENSION OF GAUSSIAN QUADRATURE

It has been noted in [10] that there exist trigonometric and exponential
analogs of Gaussian quadrature formulas. In [12] this also was observed
for the trigonometric case. Here we construct n-point rules that are exact
for the more general class V2n , n~ 1. We will find upper bounds for the
quadrature error. Also exact formulas for the quadrature error are fur
nished in the trigonometric and hyperbolic case. For small intervals we find
a way to make a comparison with ordinary Gaussian quadrature. Some
numerical examples are given.

But first we must show the existence of such formulas.

THEOREM 5.1. Let w be a positive, even, and Riemann-integrable weight
function on ! = [a, b]. Suppose that Assumption 3.2 is fulfilled. Let {1jId k~ 1 ,

IjIkE·Uk=span{1,s,s2, ...,sk-I}, be the orthogonal sequence generated by
the weight function w= c1 w, and normalized so that IjI k - Sk - 1 E Uk _ l' k ~ 1.
For each n ~ 1 we then have

riP(x) w(x) dx = t AjiP(~),
a j~ 1

where gj} j ~ 1 are the zeroes of IjI n+ 1 and

A= IIlj1nll~ . s'(~j) >0
} 1jI~+ l(~j) IjIn(~j) Cl(~J '

and where II II IV denotes the norm induced by w.

j= 1,..., n

(5.1 )

(5.2)
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Proof By linearity it is sufficient to show (5.1) for <P =<Pb k = 1,..., 2n.
Since w is even, (2.3), (1.4), and (1.5) imply

kodd

k even

where PkE [pi k is monic and Pk is even (odd) if k is odd (even). First take the
case k odd. The change of variable x = s - I (y) gives

r<Pk(x)w(x)dx=f Pk(y)v(y)dy,
a J

where J = s(l) and

v(y) = w(s - l(y))(S - 1)'( y), YEJ.

(5.3 )

The two integrals in (5.3) are also equal if k is even because then they both
are equal to zero.

Let {qj} i= 1 be the monic polynomials that are orthogonal with respect
to the weight function V, where {Ii E Pj' j ~ l. Let ( , )" be the inner product
and II II" be the norm. Let {pJj ~ 1 be the zeroes of qf/ + I' ordered
increasingly, and put

j= 1,...,n. (5.4)

By the theory for ordinary Gaussian quadrature (e.g., [2])

k = 1,..., 2n. (5.5)

Put ~j=S-I(p), Aj=B/Cl(~)' j=l, ...,n. v even implies Pf/+l-j= -Pj'
Bf/+ 1-j == Bj , j = 1, , n. Because s is odd and (I is even, ~f/ + I-j == 2Jl- ~j'

Af/+I_j==Aj , j= 1, , n. First, let k be even. Then <Pk is odd. Both
J~ <Pk(X) w(x) dx and LI Aj<Pk(~j) are zero. Now let k be odd. By (5.3) and
(5.5)

r<Pk(X) w(x) dx = f Ajcl(~) Pk(s(~j)) == f Aj,pk(~)'
a j=l j=l

qk a S is a monic element of Uk' Also, for i =I- j,

(q; 0 s, qj 0 s)w = (q;, q)" = O.

Therefore rjJk = qk 0 s. Hence {~j} 'J = 1 are the zeroes of rjJ f/ + I_ Equation (5.2)
follows from (5.4) by noting that Ilqf/II~=llrjJf/lli, qf/(p)=rjJf/(~j)' and
q~+ I(Pj) = rjJ~+ l(O/S'(~)- I
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If f is a given function we will approximate J~f(x) w(x) dx by
"2:7=1 AJ(~).

Of course, (5.1) holds in the cases V2n=S~n,v' O<IX<n/(b-a), and
V2n = H~n v' IX> 0, V = 1, 2, n E 1\1. If we assume that w(Jl + IX - I arcsin y)
IX - 1(l - y'2) - 1/2 is integrable, then it also holds in the case V2n = S~n v'

IX=n/(b-a), v= 1, 2. '
Consider the case w = 1, V2n = S~n,I' Then

;; I' (' (IX(b-a)) )'oj = Jl + IX - arcsm sm 2' Pj , j= 1'00" n

where PI '00" Pn are the zeroes of qn+ IE Pn+ I' and qn + 1 is orthogonal to Pn
with respect to the weight function

(
. (IX(b-a)) )-1/21- sm 2

• y2
2

yE[-I,I].

For small ex, PI '00', Pn are asymptotically the zeroes of the nth degree Legen
dre polynomial on [- 1, 1]. In that case ~ I '00', ~n are nearly the zeroes of
the nth degree Legendre polynomial on I. If ex = n/(b - a), PI "00' Pnare the
zeroes of the nth degree Tchebycheff polynomial. In that case ~ I ,00" ~n are
equidistributed and we obtain the well-known trapezoidal rule.

The proof of Theorem 5.1 gives a hint for the practical construction of
n-point rules (cf. [3, p. 580J). Let Km= JI-I y2mv(y) dy, m ~ O. In both the
trigonometric and hyperbolic cases K m is found easily when w = 1. Set
qk(y)="2:0,;;2j';;k_ICk,jyk-I-2i, where ck,o=1. The coefficients Ck,j are
found via the recurrence relation for orthogonal polynomials

0~2j~k,

where

Having found the coefficients in qn+ h we use Newton's method to
calculate PI '00" Pn' Then we find

Bj = L Cn,jKn-I-/(q~+I(pJqn(Pj))'
O~2j-s;,n-l

j= 1'00" n.

Finally we put ~j=S-I(pj)' Aj=B)cI(~J,j=l,oo.,n.

The quadrature error is defined by

E,,(f) =rf(x)w(x)dx- f AJ(~j)'
a i= 1

We assume that f is bounded and that fw is integrable.
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Since CI =11 E V2n , n';3; 1, 0 = En(cd = f~ CI(X) w(x) dx - LZ~ I AkCI(~k)'
It follows that

(5.7)

The upper bound in (5.7) is independent of n. Hence the method is stable.
Let us look at some numerical examples with w= 1. For notational con

venience we denote the quadrature error by E~(f) if V2n = P2n, by E~~v(f) if
V2n = S~~:v' and by E~~~(f) if V2n = H~~:v'

EXAMPLE 5.2. Let I'\(x) =e'\cosx, x E 1= [ - 3,3]. We found

n E~(fl) E~~I (fl) E~(fo.d E~\(fol) E~(fo.ol) E~\(fo.od

2 3 2 1.10- 1 1'10- 2 1.10- 2 1.10- 4

4 4.10- 1 3· 10- 2 2.10- 3 3.10- 6 6.10- 5 3.10- 10

6 3.10- 2 3'10- 4 3.10- 5 2.10- 10 2.10- 7 _3,10- 16

EXAMPLE 5.3. Here I(x) = In(2 + x), x E 1= [ -0.25,0.25]. We found

n E~(f) E~~I(f) E II (f) EIII(f) EIII(f)n,2 n,1 n,2

2 -3'10- 6 -5'10- 6 -4'10- 6 -9'10- 7 5.10- 6

4 _2'10- 11 -8'10- 11 -1,10 -10 _3.10- 12 6.10- 11

6 _2'10- 16 _2'10- 15 _4.10- 15 _3.10- 17 8.10- 16

In Example 5.3 the errors for the five methods are of about the same size.
But in Example 5.2 the trigonometric method works remarkably better. We
will later return with an explanation of this phenomenon.

Let us find upper bounds for IEn(f)I.

PROPOSITION 5.4. Let w be positive, even and Riemann-integrable on
1= [a, b]. Suppose that Assumption 3.2 holds and that cI(a»O, cI(b»O. If
f is bounded and Riemann-integrable, then for n ';3; 1

where

(
max CI) JbM= 1+-.- w(x)dx.
mIn C t a

(5.8)
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Let kEN. Suppose further that S,Cl,C2ECk(I) and that s'(a), s'(b), c2(a),
c2(b»0. IffECk(I), then

2n>k. (5.9)

Proof By (5.7) we see that IIEnlloo~M. Linearity and En(¢J) =0 for
every ¢J in V 2n imply (5.8). The Jackson-type theorems in [5] give (5.9). I

If fE C(I) then by Proposition 5.4,. limn_oo En(f) = O. By [2,
pp. 100--102] this result may be extended.

PROPOSITION 5.5. Let w be positive, even, and Riemann-integrable. Sup
pose that Assumption 3.2 holds and that cl(x), C2(X), s'(x) > 0, x = a, b. Iff
is bounded and Riemann-integrable, then

lim En(f) = O.
n-+'4

(5.10)

If only boundedness and integrability are assumed, then the convergence
may be very slow.

For smooth integrands we obtain explicit error formulas in the
trigonometric and hyperbolic cases.

THEOREM 5.6. Let w be a positive, even, and Riemann-integrable weight
function on I=[a,b], and let nEN. First let V2n =SZn.v, where O<cx<
n/(b - a). Set l(x) = J.1 + 2cx(x - J.1) and (j = l(~j)' j = 1,..., n. If fE C2(I) there
is a ~ E I such that

(5.11 )

where

Dn(f, x) = Jc[ (1' (1 ,..., (n' (n, l(x)] ,(f 0 1- 1), v= 1

= [( I' (1)'''' (n, (n, l(x )],(f 0 1- I), v= 2

and where ). [ , , ], F, [ , , ], F are trigonometric divided differences (see
[7] ).

If f E C2n(I) then there is a ! E I such that
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where

((
I(~)-y

L~n,J(y)= cos 2 D

+ 2ew sin I(~~- y) D ~DII (D2+ (2exj )2)) f(y), v= 1

=j01 (D2+(2ex(j-~)r)f(Y), v=2

and D = dldy, c( ~) = n f~ TO,2n(x) dx, where TO,2n is the trigonometric
B-spline with knots (I, (I"", (n, (n, 1(0·

Now let V2n=H~n,2' where ex>O. Set I(x)=Il+G«x-,u), (j=I(U,
j=l,...,n. Put Dn(f,x)=[(h(I'''',(n,(n,/(x)]h(f0 I-I), where [" ]hF
is the hyperbolic divided difference (see [13, (4.1)]). Then iffE C2(l) there is
a ~ E I such that

b( n )2En(f) = Dn(f, ~) L }]I sinh(ex(x-~j)) w(x)dx.

Let C(0 = 2n f~ QO.2n(X) dx, where QO.2n is the hyperbolic B-spline with knots
(h (I,,,,, (n, (n, 1(0 (see [13, (5.1)]). Set L~n.2=TIj~I(D2-(2a(j-!))2).If
f E C2n(l) there is a ~ E I such that

En(f) = c(0 r(01 ex - I sinh(a(x - ~j))) w(x) dx' L2n,2f(~)/(2n)!.

(5.14 )

Proof The proof is analogous to that in the polynomial case. Take the
trigonometric cases first. We seek an element Q of S~n v that solves the Her-
mite interpolation problem .

We simply let Q = R 0 I, where R E S1~:v Hermite interpolates to F =f 0 1- I

at the ('s. By Theorem 5.1

n n rb

L AJ(~j)= L AjQ(~j)=J Q(x)w(x)dx
j= I j= I a

so En(f) = g(f(x) - Q(x)) w(x) dx = (l/2a) j~:t~Z(F(y)- R(y))
w(l-'(y))dy where h=b-a. By [6, (3.1), (4.1)]

F(y) _ R(y) = (fI sin y - (j)2 {AU" (I"", (n, (n, y], F,
j=1 2 [(I'("''','n,(n,y],F,

v=l
v=2.



174 PER ERIK KOCH

Since FE C2(I) the trigonometric divided differences are continuous in y. A
change of variable plus the mean value theorem for integrals now gives
(5.11). The integral representation for trigonometric divided differences [8,
p. 276; 6, (4.3)] implies (5.12).

The hyperbolic case, V2n = H 2n.2= H 2n , is proved in the same way. After
having redefined I we set F= f 0 I-I and let R E H~n solve the Hermite
interpolation problem at the (/s. Put Q = R 0 I and proceed as above. We
get EnU)=(l/iX)J~~~Z~~(F(y)-R(y))w(l-'(y))dy. Using the represen
tation (4.2) in [13] for the hyperbolic divided difference and using the
smoothness properties of these, we obtain

F(y)-R(y)=C01 Sinh(y-ur [(I,(I,"·,(n,(n,Y]hF.

This shows (5.13). Equation (5.14) follows from the integral representation
of hyperbolic divided differences [13, (7.5)]. I

But how should one choose between these methods? For smooth
integrands on short intervals we will now see that this depends on the
action of the corresponding differential operator upon the integrand.

THEOREM 5.7. Let Vo be positive, even, and Riemann-integrable on
[ -1,1]. Set w(x) = vo((2Ih)(x- /l)), x E h = [/l- h12, /l + h12]. Let n E ~J.

Suppose that fE C2n(Iho) for an hoE (0, nla). Let V2n be S2n,v restricted to Ih.
Denote by E~U) (E~ vU)) the quadrature error in n-point (trigonometric)
Gaussian quadrature. if D2nf(/l) # 0 then

(5.15 )

where here
n-I

L 2n.v = TI (D 2+ (2aj)2), v= 1
i~O

The same conclusion holds for the hyperbolic case V2n = H 2n,2 if L 2n,2 is
changed to TIj= I(D 2

- (2a(j - !)f).
Proof Let us take the trigonometric case first. So s(x) =

sin(a(x - /l))/sin(ahI2). Let {Pk,O} k= I be the monic, orthogonal polynomials
associated with Vo, and {Pk,h}k= 1 the corresponding family with respect to
1\(Y) = c I (s - I(y)). (s - l)'(y) . vo((2Ih)(s - I(y) - /l)). Set Vh(y) = vo((2Ih)
(S--I(y)_/l))(S-I)'(y), Iyl ~ 1. Let the ~/s lie in ascending order. By
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Proposition 3.3, ~n +1- j = 2J.l- ~j' j = 1,..., n. By the trigonometric formula
sin(A + B) sin(A - B) (sin A + sin B)(sin A - sin B) we obtain
sin(a(x - ~J) sin(a(x - ~n + 1 - j)) (sin(a(x - J.l)) - sin(a( ~j - J.l)))
(sin(ilC(x-Jl))+sin(a(~j-Jl))), j= 1,..., n. Therefore OJ=1 sin(a(x-~j))E

Un + t. Since it has the same zeroes as l/J n+ 1 of Theorem 5.1 we have
Oj~lsin(a(x-~j))=(sin(ah/2)t·l/Jn+l(x). A change of variable shows
that l/Jn+1 0 S-I is orthogonal to Pn with respect to Vh' Hence Pn+l,h=
l/Jn+l 0 s-t. Substituting X=S-l(y) in (5.12) now yields

for some ~~, ~~ E [h'

For the polynomial case

for some ~h E [h'

As h --+ 0+, (a-I sin(ah/2))2n/(h/2)2n --+ 1. Also D2"j(~h) --+ D 2"j(J.l),
L~n,J(~~)--+L~n.J(J.l), where the last L~n,v is that of (5.15). By [6,
Proposition 2.1], c(~~)--+l as h--+O+. It remains to show that

as h--+O+. (5.16)

Now

x sin (a;)I(a;)

in L1-norm as h--+O+. Similarly (2/h) vh--+Vo in L1-norm. Therefore the
coefficients in the recurrence relation for the Pk,h'S tend to the
corresponding coefficients in the recurrence relation for the Pk,O'S. Hence
IIPn+l,h-Pn+l,olloo--+O as h--+O+. We obtain (5.16).

The conclusion in the hyperbolic case follows in the same manner.
limh~o+ c(e~) = 1 can be shown by the method in [6]. I
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E~)f) = L'2n,J(J1) + O(h) (5.17)
E~(f) D2nf(tl )

if f EC2n + 1 in a neighborhood of tl and D 2nf(tl) '" 0,
If Vo == 1 in Theorem 5.7, then by [2, p. 75]

r h-(2n+I)Eh (f)- 2
2n

+
l
(n!)4 L~ f( )

h':~+ n,v -(2n+l)(2n)!)3 2n,v tl· (5.18)

Let us look back at Example 5.3, Take the simplest case n = 2. We find

D'Y(O) = -0.4, L~:~,hyp.casJ(O)= 0.6.

In view of Theorem 5.7 we therefore could have predicted that the
quadrature errors for the four methods would be of the same absolute
value.

Of course, in most cases it is not so easy to differentiate the integrand.
But one can sometimes see if the integrand is of hyperbolic or of
trigonometric category. For instance, as we see immediately, the integrands
of Example 5.2 are of the trigonometric type.

Let us now analyze why the trigonometric method worked so well in
Example 5.2. We are going to be more general. Suppose thatfE c2n+m(lR)
has period T. Therefore f may be developed in a Fourier series

00

f(x) = L (ak cos(2klXx) + bk sin(2kixx))
k~O

(5.19 )

where IX = niT and where lakl, Ibkl = O(k ~ (2n + m+ I»), k ~ 1. Differentiating
on both sides of (5.19) yields

Cf:';'

D2nf(x) = (-1 )n(21X)2n L k 2n(ak cos(2klXx) +bk sin(2klXx))
k=O

00

L'2n,d(x) = (-1 )"(2lXfn L k 2nek,n(ak cos(2klXx) + bk sin(2klXx))
k~O

where L'2n,1 is as in (5.15) and

(5.20)

If h = [ - h12, h12] and D2nf( 0) #- 0 then by Theorem 5.7

(5.21 )
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Here we have used €1 k ,n = 0 for k < n. For k ~ n, 0 < €1k •n < e - n
3j

3k
2
• So each

term in the numerator on the right side of (5.21) is ~ the corresponding
term in the denominator, in absolute value. We have Ik2nakl = O(k - m -1).
Since the numerator lacks terms for k < n, the quotient (5.21) is often less
than 1 in absolute value.

Of course, the interval in Example 5.2 is not small. But the same ten
dency holds. As A decreases, the coefficients in the Fourier series of fA decay
much more rapidly. The quotient (5.21) decreases quickly.

Hence for some problems it may be an advantage to use these noo
polynomial methods.
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